
Performance of Lyapunov Solvers on Dedicated
SLICOT Benchmarks Collections

Vasile Sima
National Institute for Research & Development in Informatics

Bucharest, Romania
vsima@ici.ro

Abstract—Lyapunov equations are often encountered in con-
trol theory and its applications, including system balancing,
model and controller order reduction, and stability analyses.
An accuracy-enhancing solver for standard and generalized
continuous- and discrete-time Lyapunov equations is investigated
in this paper. It has been derived by specializing a solver
for algebraic Riccati equations based on Newton’s method.
The conceptual algorithm and some implementation details are
summarized. The numerical results obtained by solving sets of
examples of increasing dimension and numerical difficulty from
the SLICOT benchmark collections for Lyapunov equations are
analyzed and compared to the solutions computed by the state-
of-the-art MATLAB and SLICOT solvers. The results show that
most often the new solver is more accurate, sometimes by several
orders of magnitude, than its competitors, and requires only a
small increase of the computational effort.

Index Terms—linear multivariable systems, Lyapunov equa-
tion, numerical algorithms, software, stability

I. INTRODUCTION

Lyapunov equations are often encountered in control theory
and its applications. Their solution is needed, for instance,
to compute balanced (stochastic) realizations [1], [2], or to
find reduced order models for systems or controllers [3]–[7].
Both mentioned applications may resort to the Hankel singular
values, which are important input-output invariants of stable
linear systems. Lyapunov equations also appear in Newton-
like methods for solving algebraic Riccati equations (AREs),
by finding the Newton direction at each iteration. Moreover,
these equations are used in stability analyses of dynamical
systems. For instance, consider an autonomous linear time-
invariant system

λ(x(t)) = Ax(t), t ≥ 0, x(0) = x0, (1)

where x(t) ∈ IRn, and λ(x(t)) is the differential operator,
dx(t)/dt, for a continuous-time system, and the advance
difference operator, λ(x(t)) = x(t + 1), for a discrete-time
system. This system is asymptotically stable if and only if for
any symmetric positive definite matrix Y , there is a positive
definite matrix X , the unique solution of a Lyapunov equation

ATX +XA = −Y, (2)

This work was partially supported by the Institutional research programme
PN 1819 “Advanced IT resources to support digital transformation processes
in the economy and society — RESINFO-TD” (2018), project PN 1819-
01-01, “New research in complex systems modelling and optimization with
applications in industry, business and cloud computing”, funded by the
Ministry of Research and Innovation, Romania.

or
ATXA−X = −Y, (3)

for a continuous- or discrete-time system (1), respectively,
where T denotes the matrix transposition. Discrete-time Lya-
punov equations are also called Stein equations.

More general Lyapunov equations are considered in this
paper. Specifically, the equations

op(A) TX op(E) + op(E) TX op(A) = −Y, (4)

and

op(A) TX op(A) − op(E) TX op(E) = −Y, (5)

where A, E ∈ IRn×n, and the operator op(M) is either M
or MT , are called generalized continuous- and discrete-time
Lyapunov equations, respectively. A necessary condition for
their nonsingularity is that both A and E, for (4), or either A
or E, for (5), are nonsingular. Without loss of generality, it
may be assumed that E is nonsingular for (5), because of the
symmetric role of A and E in this equation. Stable Lyapunov
equations are those for which Λ(AE−1) ∈ IC−, for (4), or
ρ(AE−1) < 1, for (5), where IC− is the open left half of the
complex plane, and Λ(M) and ρ(M) are the spectrum and the
spectral radius (i.e., the maximum moduli of the eigenvalues)
of the matrix M , respectively. These stable equations have
a unique positive-semidefinite solution, X . Then, X can be
written as X = UTU , where U is the Cholesky factor of
X . For an identity matrix E, E = In, the standard Lyapunov
equations are obtained. Both forms of op(·) appear for finding
the Hankel singular values of a dynamical system. For a
generalized system,

Eλ(x(t)) = Ax(t) +Bu(t), y(t) = Cx(t), (6)

there are two closely related generalized Lyapunov equations,

APET+EPAT = −BBT , ATQE+ETQA = −CTC, (7)

in the continuous-time case, and

APAT−EPET = −BBT , ATQA−ETQE = −CTC, (8)

in the discrete-time case, where Q and R are the controllability
and observability Gramians, respectively. The Hankel singular
values are defined as the nonnegative square roots of the
eigenvalues of the matrix product QP . For a stable system,
this product has theoretically only nonnegative eigenvalues.

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 158

Numerical computations performed without taking into ac-
count the symmetry and semidefiniteness of the solutions,
might result in nonsymmetric and indefinite Gramians, due
to accumulated rounding errors. Consequently, some com-
puted Hankel singular values might appear as negative or
even complex numbers, which is a nonsense. This proves
the importance of ensuring reliability and accuracy of the
computations. For this application, it is preferable to use the
algorithm in [8], which delivers the Choleky factors Rc and
Ro of the Gramians, P = RcR

T
c , Q = RT

o Ro, with Rc

and Ro upper triangular. Moreover, the matrix products BBT

and CTC are not performed, but B and C are directly used.
Then, the singular values of the product RcRo are the Hankel
singular values of the system. Therefore, they are numerically
guaranteed to be real nonnegative.

This paper investigates the performance of some Lyapunov
solvers in terms of accuracy and efficiency. Besides the state-
of-the-art solvers from the Control System Toolbox [9] and
SLICOT Library [10]–[12] (www.slicot.org), a new SLICOT-
based, accuracy-enhancing solver is used. This solver has
been originally destined to compute solutions of AREs using
Newton’s method [13]–[15], but its functionality has been
recently extended to accurately solve (generalized) Lyapunov
equations. All these solvers use the algorithm in [16] and
its generalization [17], both implemented in SLICOT. The
general algorithm in [17] reduces the matrix pair (A,E) to a
real Schur-triangular form [18] by orthogonal transformations,
updates the right hand side, solves the reduced Lyapunov
equation, and transforms back the result to the solution of
the original equation. Many computational details for standard
Lyapunov equations are given, e.g., in [19]. The procedure is
similar, but A is reduced to a real Schur form.

The use of the op operator as an option allows to compute
only once the real Schur-triangular form (or real Schur form,
when E = In) of the pair (A,E) (or of A) for finding both
controllability and observability Gramians. No transposition
is needed. For using the accuracy-enhancing solver, it is
necessary to solve one equation using the original pair (A,E);
the solver returns the Schur-triangular form of this pair, which
can then be used as input for solving the second equation.

The paper is structured as follows. Section II briefly de-
scribes the underlying algorithm. Section III presents some
numerical results for solving sets of examples from the
SLICOT CTLEX [20] and DTLEX [21] benchmark collections
for Lyapunov equations. Section IV concludes the paper.

II. UNDERLYING ALGORITHM

Lyapunov equations are special cases of AREs, which miss
the quadratic or rational matrix term in the continuous- or
discrete-time case, respectively. Therefore, some algorithms
for solving AREs could be, in principle, specialized to
solve Lyapunov equations. The algorithms based on Newton’s
method, with or without line search [13]–[15], [22], proved
to be very successful in improving the accuracy of the so-
lutions for Riccati equations. Recently, the author adapted
the Newton-based ARE solver to Lyapunov equations. The

conceptual algorithm is summarized as follows.

Algorithm ALyap: Accuracy-enhancing Lyapunov solver

Input: The coefficient matrices E, A, and Y .
Output: The solution Xk of (4) or (5).

Set X0 = 0.
FOR k = 0, 1, . . . , kmax, DO

1) Compute the residual R(Xk) defined by

R(Xk) := op(A) TXk op(E) + op(E) TXk op(A) +Y,

R(Xk) := op(A) TXk op(A)− op(E) TXk op(E) +Y,

for a continuous- or discrete-time system, respectively. If
convergence is decided, return Xk. If non-convergence
is detected, return a warning or error indicator value.

2) Solve in Lk the continuous- or discrete-time generalized
(or standard, if E = In) Lyapunov equation (9) or (10),
respectively,

op(A) TLk op(E) + op(E) TLk op(A) =−R(Xk), (9)

op(A) TLk op(A) − op(E) TLk op(E) =−R(Xk). (10)

3) Update Xk+1 = Xk + Lk.

END

Actually, Algorithm ALyap iteratively refines a solution of a
Lyapunov equation using the residual matrix at iteration k,
−R(Xk), in the right hand side. Currently, (9) or (10) are
solved using the best available algorithms for equations with
dense matrices [16], [17], implemented in the SLICOT Library
in the style of the DTRSYL routine from LAPACK [23].
But other algorithms can be used by making straightforward
modifications. In implementation, Algorithm ALyap is refined
for greater efficiency. Specifically, it exploits the fact that the
same matrices A and E appear at each iteration. Therefore, A
and E are reduced to the real Schur-triangular form at iteration
k = 0, using two orthogonal transformations, Q and Z, namely

Ã = QTAZ, Ẽ = QTEZ, (11)

where Ã is in real Schur form (i.e., block upper triangular with
1 × 1 or 2 × 2 diagonal blocks), and Ẽ is upper triangular.
Then, the right hand side is transformed as

R̃(Xk) = ZTR(Xk)Z, or R̃(Xk) = QTR(Xk)Q, (12)

for op(M) = M , or op(M) = MT , respectively. A reduced
equation, (13) or (14),

op(Ã) T L̃k op(Ẽ) + op(Ẽ) T L̃k op(Ã) = −R̃(Xk) , (13)

op(Ã) T L̃k op(Ã) − op(Ẽ) T L̃k op(Ẽ) = −R̃(Xk) , (14)

respectively, is solved for L̃k. Finally, L̃k is transformed back
to the solution of the original equation,

Lk = QL̃kQ
T , or Lk = ZL̃kZ

T , (15)

for op(M) = M , or op(M) = MT , respectively.
The most efficient technique for the iterative improvement

of a Lyapunov equation solution is to iterate on the solutions
of the reduced equations, without transforming the right hand

159

sides with (12) and back transforming with (15) at each iter-
ation, but only at the first and the last iterations, respectively.

The main termination criterion for the iterative process is
defined based on a normalized residual, rk := r(Xk), and a
tolerance τ . Specifically, if

rk := ‖R(Xk)‖F /max(1, ‖Xk‖F) ≤ τ, (16)

where ‖M‖F denotes the Frobenius norm of the matrix M ,
the calculations are successfully terminated at iteration k, and
Xk is the computed solution. If τ ≤ 0 is given on input, it
is replaced by a default tolerance, evaluated by one of the
formulas below for (4) and (5), respectively,

τ = min { εM
√
n
(
2 ‖A‖F ‖E‖F + ‖Y ‖F

)
,
√
εM/103 },

τ = min { εM
√
n
(
‖A‖2F + ‖E‖2F + ‖Y ‖F

)
,
√
εM/103 },

where εM is the relative machine precision. The aim of
introducing the second operand of min in the two formulas
above was to prevent a premature convergence decision for
equations with very large norms for A, E, and/or Y . For such
equations, the termination criterion based on (16) might not
hold in a reasonable number of iterations, if X has a small
norm. However, a good approximate solution might actually be
found in few iterations. Therefore, the MATLAB-style relative
residual, rr(Xk), defined as the ratio between ‖R(Xk)‖F and
the sum of the Frobenius norms of the matrix terms in (4)
or (5), is also used as a termination criterion. However, it is
not tested at each iteration, to limit the increase of additional
computational effort. Moreover, updating Xk in the last step of
Algorithm ALyap is done only if ‖Lk‖F > εM‖Xk‖F . Oth-
erwise, the iterative process ends with the computed solution
Xk.

III. NUMERICAL RESULTS

This section presents part of the results of an extensive
performance investigation of the Newton-based accuracy-
enhancing Lyapunov solver in comparison to the Control
System Toolbox and SLICOT Library solvers. (The reference
to this solver as a “Newton-based” one is due to its straight-
forward derivation from the corresponding ARE solver.) The
calculations have been performed in double precision on a 64-
bit Intel Core i7-3820QM portable computer (2.7 GHz, 16 GB
RAM), using Intel Visual Fortran Composer XE 2015 and
MATLAB 8.6.0.267246 (R2015b). A MATLAB executable
MEX-function has been built using SLICOT subroutines and
MATLAB-provided optimized LAPACK and BLAS libraries.

Although many tests have been performed with randomly
generated matrices, the results reported in the sequel are ob-
tained using the SLICOT benchmark collections for Lyapunov
equations, CTLEX [20] and DTLEX [21], for (generalized)
continuous- and discrete-time systems, respectively. The short
notation TLEX will be used for both CTLEX and DTLEX
examples. These benchmarks have been explicitly designed to
support evaluating the performance of a solution method and
of its implementation with respect to correctness, accuracy, and
speed, or to compare different numerical methods and investi-
gate their behavior in difficult situations. Although planned to

TABLE I
DETAILS OF TLEX EXAMPLES. DEFAULT VALUES ARE PUT INTO

PARANTHESES.

Example Order Parameter(s)
4.1 n ≥ 2 (10) r > 1 (1.5)

s > 1 (1.5)
4.2 n ≥ 2 (10) s > 1 (1.5)

CTLEX λ < 0 (−0.5)
DTLEX |λ| < 1 (−0.5)

4.3 n ≥ 2 (10) t ≥ 0 (10)
4.4 n = 3q, q ≥ 1 (10) t ≥ 1 (1.5)

TABLE II
PARAMETERS USED FOR THE TLEX EXAMPLES.

Example Order Parameter(s)
4.1 list_n = 5 : 5 : 20 list_r = 1.1 : 0.2 : 1.9

list_s = 1.1 : 0.2 : 1.9

4.2 list_n = 5 : 5 : 20 list_s = 1.1 : 0.2 : 1.9
CTLEX list_l = −2 : 0.2 : −0.2
DTLEX list_l = −0.9 : 0.2 : 0.9

4.3 list_n = 5 : 5 : 20 list_t = 1 : 1 : 30

4.4 list_n = 15 : 15 : 60 list_t = 1.1 : 0.2 : 9.9

include four groups of examples, currently these collections
contain just group 4 — parameter-dependent examples of
scalable size — with four examples in each collection.

One parameter of the TLEX examples is the order n. Other
parameters may be chosen to set the numerical condition of the
problem, which affects the accuracy of the computed solution
and its sensitivity to small perturbations in the input data.
All parameters have default values. Table I summarizes the
main information about the TLEX examples. The examples 4.1
and 4.2 represent stable standard Lyapunov equations, while
the examples 4.3 and 4.4 represent generalized Lyapunov
equations (stable for 4.4). Moreover, the solutions of the
equations for examples 4.1 and 4.3 are known, since they can
be computed with machine accuracy.

TLEX examples have been used for several values of the
order n and of the other parameters. For examples 4.1, 4.2,
and 4.3, n took the values 5, 10, 15, and 20. For example 4.4,
q took the same values, so n has been set to 15, 30, 45, and 60.
Table II summarizes all tried parameter values. The MATLAB
notation i = k : l : m is used, i.e., i takes the values k, k+ l,
k + 2l, . . . , m.

The figures presented in the sequel have as abscissa axes
the specific example index in a series, generated by two or
three nested loops. For instance, the series of examples 4.1
is defined by a loop for n = list_n, followed by a loop
for r = list_r, and then by a loop for s = list_s. For
example 4.2, the order of the loops is list_n, list_l, and
list_s, and for examples 4.3 and 4.4, the order is list_n
and list_t.

The performance analysis program also estimated the recip-
rocal condition number, rcond, of the Lyapunov equations,
using the SLICOT-based MATLAB functions lyapcond
and steicond, for standard continuous- and discrete-time
Lyapunov equations, respectively. For generalized Lyapunov
equations, the same functions are called for the matrices A

160

and Y replaced by E−1A and E−TY E−1, respectively. Note
that these estimators are using the exact solutions of the
Lyapunov equations, when known, or the solutions, denoted
Xm, computed by the corresponding MATLAB functions
lyap or dlyap, otherwise. The chosen sequence of values
for n and other parameters for each example produces a
zigzaggy variation of rcond.

For TLEX 4.1 and CTLEX 4.4 series of examples, the equa-
tions with an estimated reciprocal condition number smaller
than ε

1/2
M ≈ 1.49 · 10−8 have been excluded; this way, 75,

77, and 85 examples remained for comparisons. Similarly, for
TLEX 4.2 series, the equations with rcond < 10−14 have
been excluded, retaining 171 and 135 examples. No examples
have been excluded for TLEX 4.3 series. No example in the
DTLEX 4.4 series had a too small rcond, but the examples
with ‖Xm‖F > 0.4/εM ≈ 1.8 · 1015 have been excluded,
since then the normalized residuals could artificially have a
very small value. This way, 132 examples remained.

To assess the accuracy of the computed solutions, the rela-
tive errors are used when the true solution, X , is known (i.e.,
for TLEX examples 4.1 and 4.3). Otherwise, the normalized
residuals defined in (16) are used. The relative error of a
computed solution X̂ is evaluated using the formula

e(X̂) := ‖X̂ −X‖F /max(1, ‖X‖F).
Fig. 1 shows the relative errors for CTLEX example 4.1 with

various parameters, using MATLAB, SLICOT, and Newton-
based solvers. For most examples, the Newton-based solver
is the most accurate, but for 19 examples with large n and
significantly ill-conditioned, this solver obtained slightly larger
relative errors than MATLAB function lyap. Fig. 2 plots
the number of iterations for the Newton-based solver and
reciprocal condition numbers for the generated equations.
Most examples need less than four iterations. Fig. 3 presents
the elapsed CPU times for these examples. The SLICOT solver
is the fastest, seconded by the Newton-based solver, with very
few exceptions.

Fig. 4 shows similarly the behavior for CTLEX example 4.2.
Newton-based solver is clearly the winner in terms of normal-
ized residuals; like in Fig. 3, with few exceptions, it is faster
than lyap, and not much slower than the SLICOT solver.

Fig. 5 plots the main results for CTLEX example 4.3.
Newton-based solver shows an excellent accuracy, with rel-
ative error near εM , while the other solvers, and especially
lyap, may lose even more than half of the machine precision,
and are strongly influenced by the problem conditioning. The
improvement is sometimes by many orders of magnitude (even
by 10 orders). In most cases, two iterations are enough to attain
this performance.

For CTLEX example 4.4, the three solvers have comparable
behavior concerning the normalized residuals, but Newton-
based solver is slightly better. Its speed is comparable with
that of lyap for examples with order n = 15, but larger for
a bigger order.

The behavior for discrete-time examples is similar. Newton-
based solver is (much) more accurate for the first 35 examples,

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-16

10-15

10-14

10-13

10-12

10-11

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.1 from CTLEX collection

MATLAB
SLICOT
Newton

Fig. 1. Relative errors for CTLEX example 4.1 with various parameters, using
MATLAB, SLICOT, and Newton-based solvers.

0 10 20 30 40 50 60 70 80
2

3

4

5

6

ite

ra
tio

ns

Number of iterations for Example 4.1 from CTLEX collection

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-10

10-5

100
rc

on
d

Reciprocal condition for Example 4.1 from CTLEX collection

Fig. 2. Number of iterations for Newton-based solver and reciprocal condition
numbers for CTLEX example 4.1 with various parameters.

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-5

10-4

10-3

10-2

C
PU

 ti
m

e
(s

ec
)

CPU times for Example 4.1 from CTLEX collection

MATLAB
SLICOT
Newton

Fig. 3. Elapsed CPU time for CTLEX example 4.1 with various parameters,
using MATLAB, SLICOT, and Newton-based solvers.

but also for several other examples from the DTLEX 4.1 series,
see Fig. 6. Only for 14 examples, this solver obtained slightly
larger relative errors than MATLAB function dlyap. For most
cases, two iterations have been enough; consequently, Newton-
based solver needed a CPU time placed in between the CPU
times of the other two solvers, see Fig. 7.

Again, the new solver produced the smallest normalized

161

0 20 40 60 80 100 120 140 160 180

Example #, depending on parameters

10-17

10-16

10-15

10-14

10-13

10-12

10-11
R

el
at

iv
e

re
si

du
al

s
Relative residuals for Example 4.2 from CTLEX collection

MATLAB
SLICOT
Newton

Fig. 4. Normalized residuals for CTLEX example 4.2 with various parameters,
using MATLAB, SLICOT, and Newton-based solvers.

0 20 40 60 80 100 120

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.3 from CTLEX collection

MATLAB
SLICOT
Newton

Fig. 5. Relative errors for CTLEX example 4.3 with various parameters, using
MATLAB, SLICOT, and Newton-based solvers.

residuals for DTLEX 4.2 series, see Fig. 8. Only for 8
examples in this series, Newton-based solver obtained slightly
larger normalized residuals than dlyap. The new solver is
also a clear winner in accuracy for DTLEX examples 4.3
and, especially, 4.4, as shown in Fig. 9 and Fig. 10. Only for
one example in the DTLEX 4.3 series, with condition number
about 1.5 · 10−12, Newton-based solver obtained a slightly
larger relative error than dlyap. It was more accurate than
dlyap for all DTLEX 4.4 examples, sometimes by several
orders of magnitude.

IV. CONCLUSION

An accuracy-enhancing solver for standard and generalized
continuous- and discrete-time Lyapunov equations, derived by
specializing a solver for algebraic Riccati equations based on
Newton’s method, has been investigated. The conceptual algo-
rithm and some implementation details have been summarized.
The implementation uses the best algorithms for solving Lya-
punov equations with dense matrices, based on the orthogonal
reduction to the real Schur(-triangular) form. This reduction
is performed only at the first iteration of the computational
process. The numerical results obtained by solving sets of
examples of increasing dimension and numerical difficulty

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-20

10-18

10-16

10-14

10-12

10-10

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.1 from DTLEX collection

MATLAB
SLICOT
Newton

Fig. 6. Relative errors for DTLEX example 4.1 with various parameters,
using MATLAB, SLICOT, and Newton-based solvers.

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-5

10-4

10-3

10-2

C
PU

 ti
m

e
(s

ec
)

CPU times for Example 4.1 from DTLEX collection

MATLAB
SLICOT
Newton

Fig. 7. Elapsed CPU time for DTLEX example 4.1 with various parameters,
using MATLAB, SLICOT, and Newton-based solvers.

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

R
el

at
iv

e
re

si
du

al
s

Relative residuals for Example 4.2 from DTLEX collection

MATLAB
SLICOT
Newton

Fig. 8. Normalized residuals for DTLEX example 4.2 with various parame-
ters, using MATLAB, SLICOT, and Newton-based solvers.

from the SLICOT benchmark collections for standard and
generalized continuous- and discrete-time Lyapunov equations
are discussed and compared to the solutions computed by the
state-of-the-art MATLAB and SLICOT solvers. The results
show that most often the new solver is more accurate, some-
times by several orders of magnitude, than its competitors,
without a significant increase of the computational effort.

162

0 20 40 60 80 100 120

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4
R

el
at

iv
e

er
ro

rs
Relative errors for Example 4.3 from DTLEX collection

MATLAB
SLICOT
Newton

Fig. 9. Relative errors for DTLEX example 4.3 with various parameters,
using MATLAB, SLICOT, and Newton-based solvers.

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
re

si
du

al
s

Relative residuals for Example 4.4 from DTLEX collection

MATLAB
SLICOT
Newton

Fig. 10. Normalized residuals for DTLEX example 4.4 with various param-
eters, using MATLAB, SLICOT, and Newton-based solvers.

REFERENCES

[1] M. Green, “Balanced stochastic realization,” Lin. Alg. Appl., vol. 98, pp.
211–247, 1988.

[2] R. Peeters, B. Hanzon, and M. Olivi, “Balanced realizations of discrete-
time stable all-pass systems and the tangential Schur algorithm,” in Pro-
ceedings of the European Control Conference, 31 August–3 September
1999, Karlsruhe, Germany, 1999.

[3] J. M. Badı́a, P. Benner, R. Mayo, and E. S. Quintana-Ortı́, “Parallel
algorithms for balanced truncation model reduction of sparse systems,”
in Applied Parallel Computing, ser. Lecture Notes in Computer Science,
vol. 3732/2006. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 267–
275.

[4] C.-A. Lin and T.-Y. Chiu, “Model reduction via frequency-weighted
balanced realization,” Control Theory and Advanced Technology, vol. 8,
pp. 341–351, 1992.

[5] M. G. Safonov and R. Y. Chiang, “A Schur method for balanced-
truncation model reduction,” IEEE Trans. Automat. Contr., vol. AC–34,
pp. 729–733, 1989.

[6] M. S. Tombs and I. Postlethwaite, “Truncated balanced realization of
a stable non-minimal state-space system,” Int. J. Control, vol. 46, pp.
1319–1330, 1987.

[7] Y. Liu and B. D. O. Anderson, “Singular perturbation approximation of
balanced systems,” Int. J. Control, vol. 50, pp. 1379–1405, 1989.

[8] S. J. Hammarling, “Numerical solution of the stable, non-negative
definite Lyapunov equation,” IMA J. Numer. Anal., vol. 2, no. 3, pp.
303–323, 1982.

[9] “Control System Toolbox User’s Guide. Version 9,” The MathWorks,
Inc., 3 Apple Hill Drive, Natick, MA, 01760–2098, 2011.

[10] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga,
“SLICOT — A subroutine library in systems and control theory,” in
Applied and Computational Control, Signals, and Circuits, B. N. Datta,
Ed. Boston, MA: Birkhäuser, 1999, vol. 1, chapter 10, pp. 499–539.

[11] P. Benner, D. Kressner, V. Sima, and A. Varga, “Die SLICOT-Toolboxen
für Matlab,” at—Automatisierungstechnik, vol. 58, no. 1, pp. 15–25, Jan.
2010.

[12] S. Van Huffel, V. Sima, A. Varga, S. Hammarling, and F. Delebecque,
“High-performance numerical software for control,” IEEE Control Syst.
Mag., vol. 24, no. 1, pp. 60–76, Feb. 2004.

[13] V. Sima and P. Benner, “Numerical investigation of Newton’s
method for solving continuous-time algebraic Riccati equations,” in
Proceedings of the 11th International Conference on Informatics in
Control, Automation and Robotics (ICINCO-2014), 1-3 September,
2014, Vienna, Austria, J.-L. Ferrier, O. Gusikhin, K. Madani, and
J. Sasiadek, Eds., vol. 1. SciTePress — Science and Technology
Publications, Portugal, 2014, pp. 404–409.

[14] V. Sima, “Computational experience with a modified Newton solver for
continuous-time algebraic Riccati equations,” in Informatics in Control,
Automation and Robotics, ser. Lecture Notes in Electrical Engineering,
J.-L. Ferrier, O. Gusikhin, K. Madani, and J. Sasiadek, Eds. Switzer-
land: Springer International Publishing, 2015, vol. 325, ch. 3, pp. 55–71.

[15] V. Sima and P. Benner, “Numerical investigation of Newton’s method
for solving discrete-time algebraic Riccati equations,” in Proceedings of
the 15th International Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO-2018), 29–31 July, 2018, Porto, Portugal,
K. Madani and O. Y. Gusikhin, Eds. SciTePress — Science and
Technology Publications, Portugal, 2018, in press.

[16] R. H. Bartels and G. W. Stewart, “Algorithm 432: Solution of the matrix
equation AX +XB = C,” Comm. ACM, vol. 15, no. 9, pp. 820–826,
1972.

[17] T. Penzl, “Numerical solution of generalized Lyapunov equations,”
Advances in Comp. Math., vol. 8, pp. 33–48, 1998.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MA: The Johns Hopkins University Press, 1996.

[19] V. Sima, Algorithms for Linear-Quadratic Optimization, ser. Pure and
Applied Mathematics: A Series of Monographs and Textbooks, E. J. Taft
and Z. Nashed (Series editors), vol. 200. New York: Marcel Dekker,
Inc., 1996.

[20] D. Kressner, V. Mehrmann, and T. Penzl, “CTLEX—A collection of
benchmark examples for continuous-time Lyapunov equations,” SLICOT
Working Note 1999-6, Jun. 1999. [Online]. Available: www.slicot.org.

[21] ——, “DTLEX—A collection of benchmark examples for discrete-
time Lyapunov equations,” SLICOT Working Note 1999-7, Jun. 1999.
[Online]. Available: www.slicot.org.

[22] P. Benner, “Accelerating Newton’s method for discrete-time algebraic
Riccati equations,” in Mathematical Theory of Networks and Systems,
Proceedings of the MTNS-98 Symposium held in Padova, Italy, July,
1998, A. Beghi, L. Finesso, and G. Picci, Eds. Padova, Italy: Il
Poligrafo, 1998, pp. 569–572.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide: Third Edition, ser. Software ·
Environments · Tools. Philadelphia: SIAM, 1999.

163

